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MINIMUM DRAG BODIES WITH CROSS-SECTIONAL ELLIPTICITY

By Jerrold H. Suddath and Waldo I. Oehman
Langley Research Center

SUMMARY

Newtonian flow theory and the calculus of variations were used to study
minimum drag shapes for bodies with cross-sectional ellipticity at hypersonic
speeds and zero angle of attack. The study was made for conditions of given
length and base height, given length and volume, given base height and volume,
and given base height and surface area. Numerical examples for conditions of
given length and base height and given length and volume are presented to assess
the effect of cross-sectional ellipticity on body shape and pressure drag coef-
ficient. The method of steepest descent was used for computations of body
shapes with given length and volume.

INTRODUCTION

The problem of determining the shapes of bodies of revolution with minimum
pressure drag at hypersonic speeds was treated in reference 1. The analysis
therein was based on Newtonian flow theory and the calculus of variations, and
treated a variety of constraints comprising combinations of length, volume,
base diameter, and surface area. If bodles with elliptical rather than circular
cross sections are considered, the solution will no doubt be lengthier, but of
similar form. As yet, minimum drag bodles with elliptic cross sections have not
been treated; however, experiments with bodies with elliptical sections have
shown (refs. 2 and 3) that increasing cross-sectional ellipticity (that is,
increasing the ratio of horizontal axis length to vertical axis length) results
in higher lift-drag ratio at both subsonic and supersonic speeds. Therefore,
the theoretical determination of minimum drag shapes with elliptic cross sec-
tions would provide the bases for extrap ... Of present data and for further
experimental investigations.

This report presents some theoretical results concerning the effect of
cross-sectional ellipticity on the geometry and pressure drag of minimum drag
bodies. The calculus of variations will be applied to obtain gualitative
results for conditions of given base height and volume and given base height
and surface area; whereas, a more detailed study will be applied to the condi-
tions of given base height and length, and given length and volume. Quantita-
tive results for given length and volume will also be obtained by the method of
steepest descent. This numerical method, developed by Kelley et al. (ref. k4),
is an iterative procedure that may be programed for a digital computer.



SYMBOLS

A area of body cross section

Cp pressure drag coefficient

C’Cl:CE:CBJChJC5 constants of integration

c constant

D drag, 1b

E(%,k) complete elliptic integral of second kind
_ OF

Fy'—é;'—

F_, ,=.5_2_E_

yy aylg

Delete symbol [F]y and the definition for it.

F(y,y') integrand of eguation (5)
f(y,y') integrand function (see eq. (3))
G integral defined by equation (2)

g(y,y') integrand of eguation (2)

I integral defined by equation (3)
J integral defined by equation (5)
&I first variation of J

K(%,k) complete elliptic integral of first kind

2_1-4°
k modulus of elliptic integrals [k = ——mW—
1+ y'
1 body length, ft



= &

m constant

)

n fineness ratio, ———
2y(1)
P exporent for power-law body shape, (n = mgp)
q, free-stream dynamic pressure, 1b/sq ft
S surface area, sq ft
v volume, cu ft
X,¥,2 orthogonal coordinastes of body

.
VA

Page 3, line 8: Delete symbol 8y and the definition for it.

Page 3, line 8 and following lines: Insert the following symbols and
definitions:

o) denotes variation consistent with prescribed boundary conditions
[ denotes variation taken at a constant station x
a(¥o) arbitrary prescribed function of y,

£ nondimensional coordinate x/1

Subscripts:

o condition at body nose

1 condition at body base

max maximim

A prime (') denotes differentiation with respect to the independent
variable.

PROBLEM FORMULATION AND SOLUTION

Statement of the Problem

The problem considered herein is stated as follows: Given a body with
cross-sectional ellipticity, find the shape that minimizes the pressure drag
and satisfies (in some instances) an integral constraint. The body is assumed
to be at zero angle of attack and the pressure drag is obtained from Newtonian
flow theory.



The geometry of the problem is
represented by figure 1. The body is
assumed to be moving in the negative
x-direction. Any plane given by the
equation x =c¢, with 0Sc <1
intersects the body in an ellipse with
minor and major axes parallel to the
y and 2z axes, respectively. For
every value of x 1n the interval
0 § b'd § 1, the ratio of the minor to
the major axis of the ellipse is the
constant p.

The Newtonian flow theory (see
ref. 5) shows that the pressure drag
acting on the body may be given by

D==E£%3y52 + Jpl Py e (1)
H o] (l + yxg)( 2 12)

pe o+ y

Typicel body section: ellipticity, n =

b
a

Figure 1.- Sketch showing coordinate system. where y! = g‘x_y is the slope of the

body in the x,y plane. Mathemati-
cally, the problem reduces to the X,y plane because of symmetry and
constant pu.

The integral constraint, when required, will be denoted by

1
G = afyo) + /; g(y,y")ax (2)

The problem may now be stated mathematically as follows: Find the func-
tion y = y(x) so that D is minimized and subject to the constraint that G

be a prescribed value.
Method of Solution and Resulting Equations
The problem may be convenlently solved by the method of the calculus of

variations. In applying the calculus of variations (ref. 6), it is convenient
to define the quantity I as

X1
— l“LD - 2 1
I= Bra ¥+ L £(y,y")dx (3)

where the upper 1limit of integration Xy is variable to permit variations in
the body length and

L



5
£(y,y') = Y ()

@+ 22 +57)

then J, the quantity to be minimized, is given by

J=1I+Ne=Hyo) + fxl F(y,y')ax (5)
0

where
Fly,y') = £(y,y") + na(y,y') and H(yy) = y02 + N(¥o) (6)

and A is a constant Lagrange multiplier. Calculating the first variation of
Jd and setting it equal to zero leads to

X=X7

+ IOXl<Fy -LEpyax=o (D)

od = Hyosyo+ BFI- y‘Fy')SX ¥ Fy|8i] x=0

From familiar arguments concerning the arbitrary variation &y, equation (7)
leads to the following four conditions:

(1) The Euler-Lagrange equation which must be satisfied over the interval
0 x € x; is

d - 8a)
Fy-aFyl—o (
Since x does not appear explicitly in F(y,y'), the first integral of equa-
tion (8a) is
y'Fyr - F(y,y') =¢C (8v)
where C 1s a constant.

(2) The terminal condition which must be satisfied at x

]
@]

is

Hyo = (Fyt)ym = O (9)

(3) The terminal condition which must be satisfied at x

X1 is either

=0 (10)



" hen the base height is not prescribed, or"

(v'Eyr - F(y,y'))L =0 (11)
~x

when the body length is not specified.

(4) Furthermore, the solution y(x) must be such that the Legendre con-
dition is satisfied everywhere along the extremal; that is

Fylyl 20 (12)

It will be seen, a posteriori, that it is unnecessary to consider the
Welerstrass-Erdmann vertex condition.

Specific Solutions

From the preceding discussion, it is apparent that some information about
the integral constraint and the terminal conditions must be specified in order
to obtain a meaningful solution to the problem. Therefore, the solution curve
y(x) will be examined analytically for conditions of given length and base
height, given length and volume, given base height and volume, and given base
height and surface area. Integral constraints arise when either the volume or
the surface area is specified and are

X
vV 1
0
for given volume, and
2 b'e
s W 1 2 [x
F=92—= 20 + fo oy\1 + y! E(-é,k)d.x (1k)

for given surfeace area where E(g?k) is a complete elliptic integral of the
second kind and

2_l—u2

1+ y'2

k

Specified base height and length.- The function F(y,y') given by equa-
tion (6) for the problem of specified base height and length, in explicit form,
is

(15)




Equations (8b) to (12) may be written explicitly in the following way:

(1) The first integral of the Euler-lagrange equation, egquation (8b), is

i R R

=C (16)
93/2
[(l +32) (2 + y‘eﬂ
(2) The terminal condition at x = 0, equation (9), is
y 22 + 2(1 + u2)y'® + y™*) Y -5 (17)

I:(l +32) (2 + y'2ﬂ5/2

x=0

55) For the terminal condition at the base of the body neither equa-
tion (10) nor (11) apply since length and base height are given.

(4) The Legendre condition (inequality (12)) in explicit form can be
written as

W'[ﬁxlL + 5u2(l + uz’)y‘g + 2(1 T uu)y'LL - (l + uz)y'{] 20 (18)

From simple physical considerations, the solution y(x) should satisfy
y(x) 20 for 0S xS 1, and, it will be assumed that y(1) > 0. With
y(x) > 0O the Legendre condition is satisfied if

oSy (x) s yl;ax(u)

The curve y! (u) is plotted in figure 2 and is seen to agree with the well-
known result (ref. 5) that y' (1) = {3 for the body of revolution.

Equation (16) requires that y(0) > 0. If y(0) =0, then C; = 0 and

this condition requires either that y(x) = O or that y'(x) = O, Physical
conditions, however, make y(x) = O untenable, and terminal conditions at

x = 0 require that y'(x) > O. Therefore, y(0) must be greater than zero;
and, thus, the body has a flat nose.

Wwith y(0) > 0, equation (17) ylelds y'(0) as a function of the ellip-
ticity parameter p. TFor convenience, this function is plotted in figure 2 and
is well below the ILegendre boundary.
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Figure 2.- Effect of ellipticity on slope of minimum drag bodies.

Equation (16) may be solved for y(x) to obtain

] Cl[(l . y'2>(u . y'gﬂj/g

1
2y15]:2u2 + l+|.l 12:] (9)
Now
v(x) 4y yUx) g 4y
X = -5 = —r——,d ' 20
f:y(o) y fy'<o> Tyt =

Teking the derivative of equation (19) with respect to y', substituting the
result into equation (20), and subsequently integrating yields

{[@2 + {1+ ug)y'z:l _ (- H2)2 - (+p } [1 +32)(u2 + y‘e)J

8p.2y'h' 22 E?ue + (l + IJ-Q)Y'E__J LHL% 2

r'
iy

,!( 2
%f 1--10p.2+|.1)"’:|_Og J'E(p + y! )+u+l+u2
l6|J.3 y'@ 2u

i

J 1 12 2 2 12 4 1+ P--é] (l ~ M )5 ~1 (l - {J.2) a
| ' 1+ P Hoee E/(l el ey ) o 2 | 8301 + w2 . 202 + (1 + w?)y e
(21)



The constant of integration Co in equation (21) may be determined in
terms of C; by substituting vy'(0) and x =0 for y' and x, respectively.

Since y(1) and x = 1 are given, they may be substituted into equations (19)
and (21) to obtain two equations which may be solved simultaneously to determine
y'(1) and Cy. Finally, by choosing values of y' between y'(0) and y'(1),

x and y(x) may be computed to define the body shape completely. The numer-
ical work may be programed for a digital computer.

Specified length and volume.- The integral constraint for the problem of

specified length and volume is given by equation (13) and the integrand func-
tion is '

oyt
J(2 + yB) (2 + y2)

Equations (8b) to (12) in explicit form are as follows:

F(y,y') = + Ay© (22)

(1) The first integral of the Euler-Lagrange equation is
QWN:VBI:EHQ + (l + HE)Y:ZJ
3/2

(1 +y3)(u2 + y?))

(2) The terminal condition at x = O is the same as for the preceding
problem. Therefore, equation (17) is applicable.

- W2 = C5 (23)

(3) The terminal condition at x = 1 (eq. (10)) is
2yy'2l,—5u2 +2(1 + pB)y 2 4 yr¥]
3/2
Kl + b"e)(ug + Y'E)j x=1

(%) The discussion of the Legendre condition presented for the preceding
problem is applicable for the present problem.

=0 (24)

For y(1) > 0, equation (24) requires that y'(1) = O and thus

C3 = 4%E§(1i]2. (See eq. (23).) Furthermore, equation (23) yields

Ny = alw,y') - \/ag(u,y') + (er)g (25)




where

y3 22 +.(l + u?)yfgjr (26)
[(l + y,E)(ug + y,2>:|5/2

from which it can be seen that y(0) # 0. This nonidentity follows from the
fact that y; > O, and the right-hand side of equation (25) cannot be identi-

ou,y') =

cally zero if y; # O.

Now,

(x) y'(x) "(x) '
A = b/ﬁy 10) _ L/‘ LA 4y . U/‘y 1- iy y) n(wyay'  (27)
VO L ey + ()

Further, the volume integral is

2
1 0
)\BV = % ‘/::) (M)2d(7\x) ="E f (O)[ - VCL2 + (7\}’1)2] n 1l - > < = dyl
y! : ’————a N (7\y1>

(28)

Numerical solutions may be obtalned by the following procedure:

(1) Approximate a value for Ay; and substitute it into equation (25) to
obtain Ay as a function of pu and y'.

(2) Integrate equation (27) from y'(0) to y'(1) = O to evaluate Al
and, hence, A.

(3) The value of Ay; 1is adjusted until the computed value of A satis-

fies the volume constraint (eq. (28)) for the specified volume.

(4) The body shape may then be computed by simultaneous solution of equa~-
tions (25) and (27).

10



R—

In addition to this procedure, the method of steepest descent, which is a
powerful tool for computing optimum trajectories, may also be used to compute
the desired minimum drag body shapes. This method was in fact used to make the
calculation in preference to the previously outlined procedure because of the
convenience it afforded the suthors. The appendix presents the necessary
reformulstion of the problem so that the method of steepest descent, which is
discussed at length, may be used to obtain solutions.

Specified base height and volume.- The integrand function for specified
base height and volume is the same as for the preceding problem.

5
F(y,y') = &y + ny2 (29)
\](l +y2)(u2 + y'2)
The other equations of importance are as follows:
(1) The first integral of the Euler-Lagrange equation is
. 2
2yB(1,¥y') - N° = Cy (30)
where
3[ 2 2)y12
y'olens + (l + uo)y
B(w,y) = — (31)

Kl +y ) (uB + y‘2)]3/2

(2) Equation (17) is applicable for the terminal condition at x = 0, and
y'(0) 1is a function of p. (See fig. 2.)

(3) The terminal condition at x = x; (eq. (11)) is

=0 (32)

X=Xl

(2yB(u,y') - 7\y2)
(4) The Legendre condition given by equation (18) and the discussion of
equation (18) apply to the present problem.

Equation (32) requires that ¢, (ea. (30)) be zero. Thus, equation (30)
may be solved for y = y(y',A) to give

_ 2p(u,y")
y = ——

x (53)

The condition that y(0) = 0 satisfies the terminal constaint at the
body nose (eq. (17)), and from equation (33), the slope at the nose is zero

11



(y'(0) = 0). Further, the slope of the body must increase monotonically as x
However, the slope must not exceed the values given by the Legendre

increases.
Thus, the bodies for a given base height and volume will

boundary (fig. 2).
have a cusped shape.

The minimum drag body shape may now be completely defined by equation (33)

and
y(x) y'(x) y'(x)
X = & - .}_ Q'L 2_ 4B 4y¢ (3k4)
j;«o) v fy'(o)=o v fy'(o>=o N

which integrates to give

2 (1 + y'g)[Bu%r'g (2 - H2)Yﬂ - (2 - ,Hg)y'é
A l:(l + y p, + y'2:| /2

. (u8 - ul* + 8uZ + 2)[u(2y'2 +1+ ue) - (l + ME)\[(l + :Y'e)(u + y’g)}

2u(l - ug)h\Rl + y'g)(uz + y'e) 7

X =

(35)
for 0<pu<1l and
L 12
x %Z__'*'LE (36)
(1+y2)

for p =1 (body of revolution).

In order to avoid unnecessary computations that result from some selections
of volume and base height, a useful guide is obtained by considering the volume

integral given by
X) y (37)
v=>=C f yodx = f i Y_ dy' dy!
H Jp y' dy

or, explicitly,

N8
3

y ]
byt [2;12 + {1+ ug)v’e] [6“1* rou2(n + w8y ? +2(i - 2+ W)yt - (14 By 6] ar (38)
Yy IJ-(-)\V:L)5 o

Kl + y’E)(ug + y’e)] ne

12



where

t522 l 2 1
>\y1=2yl “+(+u)ylj (39)

[(l * yl,e)(uz * yl'g):l &

The minimum allowable value of the ratio V/grl5 may be obtained by integrating

equation (38) with the slope given by the Legendre boundary (yl' = yﬁax(“)) as

V(y1' = Ygax(®))
Yl3

the upper limit of integration. A plot of is presented as

a function of ellipticity p 1in figure 3.

Minimum drag body shapes for given base height and volume (with
Yo = yo' = O) may be computed by the following procedure. With the base height

and volume chosen such that

3 = 3 (fig. 3): 16 —
J1 Ji
equation (33) and either equa-
tion (35) or (36) are solved simulta- . v

neously for y and x for an

assumed value of A. The value of A

is adjusted until the resulting body B2
shape satisfies the integral con-

straint (eq. (13)) for the desired

volume. 10

Bodies having blunt noses
(y(0) > 0) are also possible, but % 8
generally they have a fineness ratio
much less than 1 and the height at
the nose is of the same order of 6 \\
magnitude as the base height. Con-
sequently, the bodies resemble thin \\
disks with cusped edges. Equa~-
tions (33) and (34) must be solved \\\
simultaneously to obtain the body N
shape, whereas A and Yy, must be ? ~

adjusted to satisfy the volume con-
straint and the terminal conditions. o

¢] .2 A .6 .8 1.0
Specifled base height and sur- Body ellipticity,
face area.- The integral constraint
for the problem of specified base Figure 3.- Minimm values of V/y;> for mini-
height and surface area is given by mum drag body shapes with given base height
equation (14), and the integrand and volume. y;' =y' (u).
function is

13



F(y,y') = 2y v + ML+ 25(%,x) (40)

v -o)

Equations (8b) to (12) then are as follows:

(1) The first integral of the Euler-lagrange equation is

il R RS 0 B o 0 R 0 Il )

Kl-by'e 2-+y 2J5/2 l-+y'2

2y
= Cs (L1)

where K(g,k) and E(g,k) are complete elliptic integrals of the first and
second kind, respectively.

(2) The terminal condition at x =0 1is

K£k>
'2[3u2 T yﬂ L<2_ M g -0 (42)
EY(O) /2
(2 +y2)( + y2)’ L+ yt®
x=0
(3) The terminal condition at x =x; (eg. (11)) requires that C5 =0
(eq. (41)).
(4) The Legendre condition in explicit form is
2y’ 57 [:6ulL + 5u2(l + ug)Y'g + 2(1 - w2+ un>y - (l + ue)y é}

1k




For y(x) >0 and C5 = O, the slope y'(x) 1is constant (eq. (k41)).
Thus, the bodlies are cones with elliptical cross sections.

The complete solution to the problem is obtalned in the following way:
The integral constraint (given surface area) is (eq. (14))

S *1
b f oy\L + y'EE(E,k)dx
2 o 2

Since y'(x) = constant, ¥y = y'x, so that

X
1
% = 2y'\f1 + y'eE(%,k>f x dx = y’\!l + y'EE(%,k>x12
0

However, x; = ,l , and

BS _ Jl_i_ZiE E(g’k)[?(xlﬂ 2

or

s L ;'y'a‘ E(’-a‘-,k> ()
2

Equation (L44) may be solved for y' with given y(%) and surface area.
Further,

may be evaluated.

Finally, the value of y' from equation (44) may be substituted into
equation (41) to evaluate A. Of course, A and y' must satisfy the
Legendre condition, inequality (43), for an admissible solution.

RESULTS OF COMPUTATIONS

The problem of determining minimum pressure-drag body shapes with ellipti-
cal cross sections has been formulated, the solutions have been discussed
qualitatively, and procedures have been presented to aid numerical solutions.
The remainder of the present report will be a presentation of the results of

15




computations for the conditions of given base height and length and given
length and volume.

To assess the effect of body-section ellipticity on the geometry and pres-
sure drag of minimum drag shapes, calculations were made for bodies with given
length and base height and given length and volume. For convenience, the cal-

culations were made for fineness ratios <n = 2¥E§)> of 5 and 10. Furthermore,
body coordinates were made nondimensional by dividing by the body length 1

(that is, & = %, and 71 = %). The calculations were made for values of the

ellipticity parameter p ranging from 0.1 to 1.0.

Body shapes for given base height and length were calculated by programing
equations (19) and (21) for a digital computer. Figures 4(a) and 4(b) are
logarithmic plots of the bodies with fineness ratios of 5 and 10, respectively,
and are presented to indicate the degree of validity of the approximation

n= mgP, where m and p are constants. This approximation plots as a
straight line on a logarithmic scale, and the amount of deviation of the body
shape curve from a straight line i1s a measure of the inaccuracy of the approxi-
mation. The results presented in figure 4 indicate that the approximation is

exact. —tt—071. The value of p 1is about 0.75 for fineness ratios
of 5 and 10, and is relatively insensitive to the parameter p.
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(a) Fineness ratio, 5. (v) Fineness ratio, 10.

Figure 4.- Minimum drag body shapes for given length and base height.
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The minimum drag body shapes for given length and volume were computed by
the method of steepest descent although some body shapes were computed for
checking purposes by the procedure outlined in the section "Specific Solutions."
The results of the computations are presented in figures 5(a) and 5(b) for

bodies with fineness ratios of 5 and 10, or 1°/V of 63.71 and 297.05, respec-
tively. "The logarithmic plots in figure 5 show that the body-shape curves
may not be approximated by a straight line except near the nose. Therefore, ‘
the shapes cannot be approximated by n = mtP."
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(a) Fineness ratio, 5. (b) Fineness ratio, 10.

Figure 5.- Minimum drag body shapes for given length and volume.

In figure 6, the distribution of the cross-section area ratio flgsg;
base

along the body length is presented for the minimum drag body shapes with given
length and base height and given length and volume. It should be noted that
the area distribution does not depend on the ellipticity parameter p in the
interval 0.1 S pu S 1.0. Furthermore, the area distributions are valid for
fineness ratios of 5 and 10. Therefore, for the given conditions, the range of
the ellipticity, and the values of the fineness ratio, it would be sufficient to
calculate only the minimum-drag body shape for one fineness ratio and an ellip-
ticity of unity (that is, a body of revolution). The shapes for other ellip-
ticities and fineness ratios could then be obtained from the resulting ares
distribution.

The effect of the ellipticity parameter on the pressure drag coefficient
of the minimum drag bodies is shown in figure 7. For specified length and base

N



.6 .6 \_
Alocal Alocal n =10

A‘base Abase

. / -

¢} o
o] .2 4 .6 .8 1.0 o .2 b

Body ebscissa, §

.6 .8 1.0
Body abscissa, &

(a) Given length and base height. (b) Given length and volume.

Figure 6.- Area distribution of minimum drag bodies with fineness ratios of 5 and 10. Ellipticity,

0.1 $pu<€1.0. ¢ =x/1.
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(a) Given length and base height.

[
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(b) Given length and volume.

Figure 7.- Pressure drag coefficient factor of minimum drag body shapes.
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height, the drag coefficients have been multiplied by the nondimensional ratio
Zg/Ab; and for specified length and volume, the drag coefficlents have been

multiplied by the nondimensional ratio Z?/V. The drag-coefficient parameters,
resulting from the use of these ratios, are independent of the fineness ratio,
yet the trend of the variation with ellipticity is representative of the trend
for the drag coefficient. The drag-coefficient parameter for the minimum drag
body shapes for specified length and base height increases by about 150 percent

- b~ 3.

Page.l9: The last three sentences of the paragraph continued at the top of !
this page should be changed as follows: "The drag-coefficient parameter for |
t?e minimum drag body shapes for specified length and base height and speci-
fied length and volume tends to decrease (although slightly) as the body sec-

tions bec?me more elliptic (fig. 7). This result agrees with the theoretical
and experimental results of Jorgensen (ref. 2) for elliptic cones."

CONCLUDING REMARKS

A theoretical study was made to investigate the problem of determining the
shapes of bodies with cross-sectional ellipticity having minimum pressure drag
at hypersonic speeds and zero 1ift. The results obtained include bodies with
conditions of given length and base height, given length and volume, given
base height and volume, and given base height and surface area. Much gqualita-
tive information about the body shapes was obtained without arriving at a com-
plete solution to the problem. Although closed~form analytical solutions were
not obtained for each set of given conditions, numerical solutions may be
obtained with an iterative procedure.

The second paragraph under CONCLUDING REMARKS should read: "Numerical com-
putations for bodies with given length and base height and given length and
volume show that the longitudinal area distributions are relatively insensi-~
tive to the ellipticity parameters for fineness ratios of 5 and 10. In
addition, the drag-coefficient parameters tended to decrease as the bodies
became more elliptic. The latter result agrees with theoretical and experi-
mental results for elliptic cones."

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., May 14, 1964.
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APPENDIX A
METHCD OF STEEPEST DESCENT

The method of steepest descent has proven to be a powerful numerical com-
puting tool for the optimization of a controlled plant when the quantity to be
optimized is a function of the final values of the dependent variables. Prob-
lems in aerodynamics are not usually thought of in terms of control theory and
controlled plants. However, in the analysis of the problem of determining
minimum drag shapes, the method of steepest descent was recognized as a useful
computational tool. 1In the following paragraphs, an exposition of the applica-
tion of the method of steepest descent to a controlled plant having three var-
ilables is presented. The necessary reformulation of the minimum drag body
problem is giveh 50 that the method of steepest descent can be used.

Let the set of ordinary differential equations of a system be
—> *
&% F t),ut),t) (A1)

where the components of the vector ixt) are the dependent st..e variables,

the T 1is a given vector-valued function, u(t) 1is the control variable, and
t is the independent variable of the problem. (A dot above a quantity indi-
cates differentiation with respect to the independent variable.) It will be
assumed that the initial condition vector EKO) = i%, is given and that u(t)

will be "guessed" along the nominal path. Thus, the set of equations (Al) may
be integrated from t =t5 to t =T. (The subscript o denotes initial con-

ditions.)

The linear equations (three dimensional for convenience) that describe
small perturbations about a nominal path are

8% = [A]8% + mu (42)

T
del
dt

d5x2
dt

M

de3
dat

— .
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The elements of the matrices [}] and E? are evaluated along the nominal path.
The set of equations adjoint to (A2) is defined to be:
LN ¥y
N = -[a]N (A3)
*
where [A] is the transpose of [}]. The ith A(t) is the influence func-

tion corresponding to the ith state variable xi(t). From equations (A2) and
(Aj), the following equation may be obtalined:

%(?- 5?) - . Bu (ak)
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integrating over the interval of the path t =1ty to t =T gives

L
ANT) * 5H(T) = f suk - & dt (A5)
tO

Tt will be assumed that T is given and that one terminal constraint is given.

Let the quantity to be optimized be ¢(X(T)>, a function depending on the
final values of the dependent variables (for example, the function may be the
final value of xp, that is, ¢(x(T)) x1(T) . Then let

L (16)

aXi

1]

Ki¢(T)

t=T
be a set of influence functions associated with ¢. Obviously,

T¢(T) - 8X(T) = s (x(T))

and, hence, equation (A5), the influence of initial conditions being neglected,

becomes
8¢9 = LT 5u<f¢- n‘f)dt (AT)

(¢]

—
Now, 7\%Tﬂ is the influence function that indicates the effect that small
changes in the control function 5u(t) will have on ¢, the function to be
optimized.

Suppose there is a constraint on i%t) which is

W=D) = 0 (18)

and construct, as previously, another set of influence functionsl associlated
with 1, or

A (1) = -gi— (A9)
17 £=T

lThe influence functions 7?¢ and Xw. are calculated by integrating equa-
tions (A3) from t =T to t = t, and using equations (A6) and (A9), respec-
tively, as initial conditions.
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As in equation (A7), the influence of initial conditions being neglected,

By = fT 5u(7—\"4’ . Ef)dt (A10)
t

o]

Now, the expression for the change in the control vector that gives the largest
changes of $ and ¢ in the right direction is

su(t) = K¢(7\°¢ . E’) + Kw(i"" . iﬁ’) (A11)

where K¢ and Kw are constants. Substituting (A1l) into (A7) and (A10),

two linear squations for the two unknown constants K¢ and KW are obtalned:

58 = Xglgp + Kylyg
oV = Kglyp + Ky
which yields
Tyy  ~Igy]|®
Kgl |Tev  Tepllv
= — (A12)
Ky o oy
I¢¢ IWW
where
T 2
I¢¢ = h/; (X¢ . m) dt
Ty = /;T(?‘p @)
Imf = fT(X)¢ . _>)(-7:W . m)dt
t

The three integrals I¢¢, Iww, and I¢W are calculated simultaneously with

the influence functions. Now, @ and &} are "asked for" changes in @
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and V. The changes are in a direction to optimize ¢ and to satisfy the
constraint (A8). From equation (All), Bu(t) is computed and a new control
vector U 1is determined for the next computer run, as

The process is repeated several times. When the optimum path that satisfies
the constraint (A8) is approached, the determinant in equations (Al2) will tend
toward zero. The problem may as well be stopped whenever the determinant
decreases enough to be troublesome because the optimum path is essentially

reached.

The method of steepest descent may be used to determine the body shape
that minimizes the pressure drag (assuming Newtonian flow and zero angle of
attack) where the length and volume are given. The cross section of the body
is elliptical. Some useful definitions are gilven below.

D pressure drag, 1lb

1 body length, ft

Qo free-stream dynamic pressure, lb/sq ft

v volume of body, cu ft

X distance along center line of body (zero at nose of body)
y distance perpendicular to body center line (function of x)

y(o,u) value of y for specified p when x =0
L body section ellipticity (ratio of minor axis to major axis)

The problem is made compatible with the method of steepest descent by the fol-
lowing change in notation.

Let the independent variable be

t =2 (a13)
1
Let the "control" variable be given by
dy
£) = vi(x) = I L
u(t) = y'(x) = (A1)
Let the dependent variables (components of the vector izt)) be
x3u5dt
Xy = (y(0,1) ] f (A15)
2 2]’( \
21 %o 0 J’l + )2 + u2)

2L




v 1
X2 = lJ'—— = f X52dt (Al6)
' 0

=L
X3 =3 (A17)

Then the set of differential equations which describe the problem is

. x3u5
Xl =
V(2 v @2 + 2)
., (a18)
XE = X5
5(5 = u
The function to be minimized is
#(X(1)) = x,(T) (A19)
and the constraint equation is
q;(:—c’(T)) = x(1) - B0 (A20)
n1)

With the problem formulated in terms of equations (A18), (Al9), and (A20),
the method outlined is immediately applicable. Solutions to the problem using
this method with a digital computer system have been obtained in less than
3 minutes.
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